a2 United States Patent

US009098427B2

(10) Patent No.: US 9,098,427 B2

Liu et al. 45) Date of Patent: Aug. 4, 2015
(54) CONTROLLING ACCESS TO GROUPS OF (56) References Cited
MEMORY PAGES IN A VIRTUALIZED
ENVIRONMENT U.S. PATENT DOCUMENTS
2005/0102671 Al 5/2005 Baumberger
(71) Applicant: Intel Corporation, Santa Clara, CA 2006/0259732 Al 11/2006 Traut et al.
(as) 2008/0147956 Al™* 6/2008 Rawson 711/6
2008/0155168 A1* 62008 Sheu etal.coccccoevvrirns 711/6
2009/0172341 Al 7/2009 Durh t al.
(72) Inventors: Baohong Liu, Cupertino, CA (US); Ritu %011/0131388 A1 62011 Chenetal
Sood, Milpitas, CA (US); Kuo-Lang 2011/0320681 Al* 12/2011 Borntraeger et al. 711/6
Tseng, Cupertinoj CA ([JS), Madhukar 2012/0265963 Al 10/2012 Agesen
Tallam, Fremont, CA (US)
FOREIGN PATENT DOCUMENTS
(73) Assignee: Intel Corporation, Santa Clara, CA WO 2014/098979 Al 6/2014
Us) OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this International Search Report and Written Opinion Received for PCT
patent is extended or ad}usted under 35 Application No. PCT/US2013/046186, Mailed on Nov. 14, 2013, 9
U.S.C. 154(b) by 312 days. pages.
* cited by examiner
(21) Appl. No.: 13/716,447)
Primary Examiner — Brian Peugh
(22) Filed: Dec. 17. 2012 (74) Attorney, Agent, or Firm — Thomas R. Lane
: .17,
(57) ABSTRACT
65 Prior Publication Data Embodiments of an invention for controlling access to groups
g group
of memory pages in a virtualized environment are disclosed.
US 2014/0173169 Al Jun. 19, 2014 In one embodiment, a processor includes a virtualization unit
and a memory management unit. The virtualization unit is to
(51) Int.ClL transfer control of the processor to a virtual machine. The
GO6F 12/00 (2006.01) memory management unit is to perform, in response to an
GO6F 12/10 (2006.01) attempt to execute on the virtual machine an instruction
GOG6F 12/14 (2006.01) stored on a first page, a page walk through a paging structure
(52) US.CL to find a second page and to allow access to the second page
. without exiting the virtual machine based at least in part on a
CPC GO6F 12/1009 (2013.01); GO6F 12/145 £ p
2013.01): GO6F 12/109 (2013.01); GOGF bit being set in a leaf level entry corresponding to the second
(); ();) Ty P)
2212/151 (2013.01) page in the paging structure and a corresponding bit being set
(58) Field of Classification Search in each entry corresponding to the first page in each level of

None
See application file for complete search history.

| 310 instruction execution begins |

the paging structure.
20 Claims, 3 Drawing Sheets

[erzamesagovar | METHOD 300

316 Whit=0

320
OR of bits [63:58]
for data page
"?

yes -
324 find new EPTP

326 view switch

=" 322 find pointer
to EPTP table

330
any of bits [57:52]
for data page

332
AND of
one of bits [57:52]
from all levels for
instruction page
=17

334 allow access

AND of
one of bits [63:58]
from all levels for
nstruction page
?

338 deny access

v no

390 VM exit |

US 9,098,427 B2

Sheet 1 of 3

Aug. 4, 2015

U.S. Patent

/¢l d1d4

9¢} 49qunNN d.1d4

911 HUN UonEZI[eNUIA

G2l ®l9el 4144

8el a1l GL1 HUN [0AUO0D 10SSBI0Id

6ct PPId

€| sebeig uone|suel| papuslxy v LI Hun soreIU|

8¢l pPI4

g€cl SONA

e¢| sobeig uone|suel |

L1 USIN

¢ Hun uonejsuel |

e obeioig Buissooo.d

¢cl 1d4

lel 1d3

02| Aowo woisAs

L€} ucneoo] obelolg

¢ L1 Hun uoinosxy

0€ | 1un wawebeuep Alowsy
LLE Hup uonondisul

Ol 10SS820.d

00| woalsAs

I 34N9I4

US 9,098,427 B2

Sheet 2 of 3

Aug. 4, 2015

U.S. Patent

SOWA Ul 8|qel d 1 d3 0} Jejulod 810is 292

+
3|qel d 143 weiboid 092
+
1z weiboid Gz -eM welboud e }z weiboud yE2 LM weliboud vz
i i i t
2A weliboud gGz 2/ weiboud zye I A weiboud zez LA weaboud gzz
t i i f
ZX weiboud oGz |« 2N wesboud ovz X wesboud gz 1N wesboud 0zz
+
z2g weiboid g1z
+
2y weiboid 912
+
1g weboud 12
+
Iy weiboid z12
+

SHQ $S©29B |04]U0D JO Joquinu weuboid 012

00¢ AOHL3N

¢ 3dNoid

US 9,098,427 B2

Sheet 3 of 3

Aug. 4, 2015

U.S. Patent

A

ssa00e Ausp gee

SoA

SS820B MO||B $EE

S9A

X8 WA 06€

ou 4

YOUMS MBIA 92€E

*

1 d3 mau pul #2¢

SoA

10} S|oAD] ||B Eo_%
[85:€9] s1q Jo suo
10 ANV

)
9|08l d1d3 01 |,

Jsuiod puly 2ze

9¢ge

abed e1ep 10}

J10] S|eA8]| ||e WOl
[2S:2G] suq jo suo
10 NV
zee

obed e1ep J0)

ou

[2G:28] suq jo Aue
0ge

00€ AOHL3N
€ 3dNoid

[85:€9] suq Jo HO
0zZ¢e

ou

O»O_"H_QMH_ -
81€

0O=1amoele
)

0=H1gaXrle

+
yem abed vlep z1e

+

suiBag uonNodXs UONONNSUI O |E

US 9,098,427 B2

1
CONTROLLING ACCESS TO GROUPS OF
MEMORY PAGES IN A VIRTUALIZED
ENVIRONMENT

BACKGROUND

1. Field

The present disclosure pertains to the field of information
processing, and more particularly, to the field of memory
management and protection.

2. Description of Related Art

Access to the contents of memory in an information pro-
cessing system may be controlled by using read, write, and
execute bits in page tables. In a virtualized environment,
multiple views of memory may be provided by using different
sets of page tables for different virtual machines, such that a
virtual machine monitor may provide and enforce different
access permissions for different guest software.

BRIEF DESCRIPTION OF THE FIGURES

The present invention is illustrated by way of example and
not limitation in the accompanying figures.

FIG. 1 illustrates a system in which access to groups of
memory pages in a virtualized environment may be con-
trolled according to an embodiment of the present invention.

FIGS. 2 and 3 illustrate a method for controlling access to
groups of memory pages in a virtualized environment accord-
ing to an embodiment of the present invention.

DETAILED DESCRIPTION

Embodiments of an invention for controlling access to
groups of memory pages in a virtualized environment are
described. In this description, numerous specific details, such
as processor and system configurations, may be set forth in
order to provide a more thorough understanding of the present
invention. It will be appreciated, however, by one skilled in
the art, that the invention may be practiced without such
specific details. Additionally, some well-known structures,
circuits, and other features have not been shown in detail, to
avoid unnecessarily obscuring the present invention.

In the following description, references to “one embodi-
ment,” “an embodiment,” “example embodiment,” “various
embodiments,” etc., indicate that the embodiment(s) of the
invention so described may include particular features, struc-
tures, or characteristics, but more than one embodiment may
and not every embodiment necessarily does include the par-
ticular features, structures, or characteristics. Further, some
embodiments may have some, all, or none of the features
described for other embodiments.

Also, the terms “bits,” “flags,” “fields,” “entries,” etc., may
be used to describe any type of storage location in a register,
table, database, or other data structure, whether implemented
in hardware or software, but are not meant to limit embodi-
ments of the invention to any particular type of storage loca-
tion or number of bits or other elements within any particular
storage location. The term “clear” may be used to indicate
storing or otherwise causing the logical value of zero to be
stored in a storage location, and the term “set” may be used to
indicate storing or otherwise causing the logical value of one,
all ones, or some other specified valueto be stored in a storage
location; however, these terms are not meant to limit embodi-
ments of the present invention to any particular logical con-
vention, as any logical convention may be used within
embodiments of the present invention.

10

20

30

35

40

45

2
As used in the claims, unless otherwise specified the use of
the ordinal adjectives “first,” “second,” “third,” etc. to

describe an element merely indicate that a particular instance
of'an element or different instances of like elements are being
referred to, and is not intended to imply that the elements so
described must be in a particular sequence, either temporally,
spatially, in ranking, or in any other manner.

As described in the background section, access to memory
pages may be controlled using read, write, and execute bits in
page tables. In a virtualized environment, multiple views of
memory may be provided by using different sets of page
tables for different virtual machines, such that a virtual
machine monitor (VMM) may provide and enforce different
access permissions for different guest software. However,
switching between these views may require transferring con-
trol of the processor from guest software to the VMM.
Embodiments of the present invention provide for the acces-
sibility of data pages to change within a virtual machine
without causing a VM exit.

FIG. 1 illustrates system 100, an information processing
system in which an embodiment of the present invention may
be present and/or operate. System 100 may represent any type
of information processing system, such as a server, a desktop
computer, a portable computer, a set-top box, a hand-held
device, or an embedded control system. System 100 includes
processor 110 and system memory 120, which may be
dynamic random access memory or any other type of medium
readable by processor 110. Systems embodying the present
invention may include any number of each of these compo-
nents and any other components or other elements, such as
information storage devices, peripherals, and input/output
devices. Any or all of the components or other elements in any
system embodiment, may be connected, coupled, or other-
wise in communication with each other through any number
of'buses, point-to-point, or other wired or wireless interfaces
or connections.

Processor 110 may represent one or more processors inte-
grated on a single substrate or packaged within a single pack-
age, each of which may include multiple threads and/or mul-
tiple execution cores, in any combination. Each processor
represented as processor 110 may be any type of processor,
including a general purpose microprocessor, such as a pro-
cessor in the Intel® Core® Processor Family, Intel® Atom®
Processor Family, or other processor family from Intel® Cor-
poration, or another processor from another company, or a
special purpose processor or microcontroller. Processor 110
may include instructionunit 111, execution unit 112, process-
ing storage 113, interface unit 114, processor control unit
115, and memory management unit (MMU) 130. Processor
110 may also include any other circuitry, structures, or logic
not shown in FIG. 1, and/or any circuitry, structures, or logic
shown or described as elsewhere in FIG. 1.

Instruction unit 111 may represent any circuitry, structure,
or other hardware, such as an instruction decoder, for fetch-
ing, receiving, decoding, and/or scheduling instructions. Any
instruction format may be used within the scope of the present
invention; for example, an instruction may include an opcode
and one or more operands, where the opcode may be decoded
into one or more micro-instructions or micro-operations for
execution by execution unit 112.

Execution unit 112 may include any circuitry, structure, or
other hardware, such as an arithmetic unit, logic unit, floating
point unit, shifter, etc., for processing data and executing
instructions, micro-instructions, and/or micro-operations.

Processing storage 113 may represent any type of storage
usable for any purpose within processor 110; for example, it
may include any number of data registers, instruction regis-

US 9,098,427 B2

3

ters, status registers, configuration registers, control registers,
other programmable or hard-coded registers or register files,
or any other storage structures.

Interface unit 114 may represent any circuitry, structure, or
other hardware, such as a bus unit, messaging unit, or any
other unit, port, or interface, to allow processor 110 to com-
municate with other components in system 100 through any
type of bus, point to point, or other connection, directly or
through any other component, such as a memory controller or
a bus bridge.

Processor control unit 115 may include any logic, micro-
code, circuitry, or other hardware to control the operation of
the units and other elements of processor 110 and the transfer
of data within, into, and out of processor 110. Processor
control unit 115 may cause processor 110 to perform or
participate in the performance of method embodiments of the
present invention, such as the method embodiments
described below, for example, by causing processor 110 to
execute instructions received by instruction unit 111 and
micro-instructions or micro-operations derived from instruc-
tions received by instruction unit 111.

Virtualization unit 116 may be included in processor con-
trol unit 115 and may include any logic, microcode, circuitry,
or other hardware to enable, assist, or support the sharing
and/or allocating of resources among virtual machines (each,
a“VM”) running on processor 110, and the transfer of control
from a VMM or other control program, having direct control
over the resources, to software programs or modules
(“guests”) running within a virtual machine (a “VM entry™),
the transfer of control back to the VMM (a “VM exit”), and
the transfer of control among VMs. A virtual machine control
structure (“VMCS”) or other data structure may be used to
store state, control, and other information for each VM.

Processor 110 also includes MMU 130 to manage the
memory space of processor 110. Memory management logic
supports the use of virtual memory to provide software,
including guest software running in a VM, with an address
space for storing and accessing code and data that is larger
than the address space of the physical memory in the system,
e.g., system memory 120. The virtual memory space of pro-
cessor 110 may be limited only by the number of address bits
available to software running on the processor, while the
physical memory space of processor 110 is further limited to
the size of system memory 120. MMU 130 supports a
memory management scheme, such as paging, to swap the
executing software’s code and data in and out of system
memory 120 on an as-needed basis. As part of this scheme,
the software may access the virtual memory space of the
processor with an un-translated address that is translated by
the processor to a translated address that the processor may
use to access the physical memory space of the processor.

Accordingly, MMU 130 may include one or more storage
location 131, translation unit 132, and translation lookaside
buffer (“TLB”) 135. Translation unit 132 includes logic, cir-
cuitry, or other hardware that may be represented as transla-
tion stages 133 to perform address translations, for example
the translation of a virtual, logical, linear, or other un-trans-
lated address to a physical or other translated address in a
series of stages, according to any known memory manage-
ment technique, such as paging. To perform these address
translations, translation stages 133 refer to one or more data
structures stored in processor 110, system memory 120, any
other storage location in system 100 not shown in FIG. 1,
and/or any combination of these locations. The data struc-
tures may include page directories and page tables according
to the architecture of the Pentium® Processor Family, as

10

15

20

25

30

35

40

45

50

55

60

65

4

modified according to embodiments of the present invention,
and/or a table stored in TLB 135.

Storage location 131 may be any register or other storage
location used to store a pointer to a data structure used by
translation unit 132. In one embodiment, storage location 131
may be that portion of the CR3 register referred to as PML4
Base, used to store the page map level 4 base address, accord-
ing to the architecture of the Pentium® Processor Family.

In one embodiment, one or more translation stages 133
receive a linear address provided by an instruction to be
executed by processor 100. Translation stages 133 use por-
tions of the linear address as indices into hierarchical tables,
including page tables, to perform a page walk. The page
tables contain entries, each including a field for a base address
of'a page in memory 120, for example, bits 39:12 of a page
table entry according to the Pentium® Processor Family’s
Extended Memory 64 Technology. Any page size (e.g., 4
kilobytes) may be used within the scope of the present inven-
tion. Therefore, the linear address used by a program to access
system memory 120 may be translated to a physical address
used by processor 100 to access system memory 120.

The linear address and the corresponding physical address
may be stored in TLB 135, so that the appropriate physical
address for future accesses using the same linear address may
be found in TLB 135 and another page walk is not required.
The contents of TLB 135 may be flushed when appropriate,
for example on a context switch, typically by an operating
system.

In a virtual machine environment, a VMM may need to
have ultimate control over the resources of MMU 130 in order
to protect the memory space of one guest from another guest.
Therefore, in one embodiment, virtualization unit 116 may
include logic to cause a VM exit if a guest issues an instruc-
tion that is intended to change the contents of storage location
131 or TLB 135, or otherwise modify the operation of MMU
130. The VMM may then maintain MMU 130 along with
multiple sets of paging or other data structures (e.g., one set
per VM) to provide for correct operation of system 110 such
that each virtual machine appears to provide complete control
of'its memory management resources to an operating system.

In some embodiments, MMU 130 may include logic, cir-
cuitry, or other hardware to support virtual machines. For
example, translation stages 133 may be configured to trans-
late a linear address to a physical address, using a data struc-
ture pointed to by the contents of storage location 131, as
described above. If this translation is performed for a guest,
the linear address is referred to as a guest linear address, a
resulting physical address is referred to as a guest physical
address (“GPA”), and additional translations are needed to
translate GPAs to host physical addresses (“HPAs”). These
additional translations may use a series of extended transla-
tion stages 134, using additional data structures such as or
including extended or nested page tables. In this embodiment,
the translation data structures for the guest may be maintained
by an OS running on a virtual machine, while the translation
data structures for the host are maintained by the VMM.
These additional translations may be enabled by a VM entry
and disabled by a VM exit.

Typically, an entry in a translation data structure includes
an address or a portion of an address that is combined, by
translation unit 132, with a portion of the un-translated
address to point to an entry in a successive translation data
structure, i.e., a translation data structure for the next stage.
However, an entry in the translation data structure for the last
stage may be or may include a physical address of a location
in memory 120. In an embodiment supporting virtual
machines, an address from an entry in a data structure may

US 9,098,427 B2

5

undergo an additional translation before it is used as a pointer
to the next stage. As an example, one embodiment may use
page tables to translate a linear address to a physical address
when not operating within a virtual machine. When operating
within a virtual machine, these same page tables may be used,
but between each page table and after the last page table, an
additional translation is performed, using a set of extended (or
nested) page tables, to translate a page table entry from a GPA
to an HPA. After translation, a GPA and its corresponding
HPA may be stored in TLB 135, so that another page walk is
not required. Embodiments of the present invention may be
implemented in page tables, extended (or nested) page tables,
and/or any other data structure used by MMU 130. As used
herein, “extended page table” is meant to include “nested
page table” and any other type of data structure used for the
additional translations to support virtual machines.

In one embodiment using extended page tables, a pointerto
the first extended page table is stored ina VMCS. A first stage
of translation stages 133 combines this pointer with a first
portion (e.g., bits 38:30 of a 64-bit address) of a GPA to find
anentry in the first extended page table. This entry includes an
HPA that is a pointer to a second extended page table. A
second stage of translation stages 133 combines this pointer
with a second portion (e.g., bits 29:21 of the 64-bits address)
of'the GPA to find an entry in the second extended page table.
This entry includes an HPA that is a pointer to a third extended
page table. A third stage of translation stages 133 combines
this pointer with a third portion (e.g., bits 20:12 of the 64-bit
address) ofthe GPA to find an entry in the third extended page
table. This entry includes the translated address.

In one embodiment, fields or bits in the format of an entry
may beused to define access permissions. For example, a read
permission bit (e.g., bit 0 or the R bit) may be used to indicate
whether a read is permitted, a write permission bit (e.g., bit 1
or the W bit) may be used to indicate whether a write is
permitted, and an execute permission bit (e.g., bit 2 or the X
bit) may be used to indicate whether execution is permitted. If
the values of any of these bits indicate that the access is not
permitted, then an error will be reported. These types of
permissions may be logically combined for each stage or
level of a page walk (including a page walk through page
tables and extended page tables), such that the most restrictive
of the permissions applies.

However, read and write permissions may not be the same
for all of the different instruction pages trying to access them.
Therefore, embodiments of the present invention provide for
grouping of instruction pages such that different groups of
instruction pages may be given different access permissions
to different groups of data pages, and these different access
permissions may be enforced within a virtual machine with-
out causing a VM exit. In some embodiments, the bits or fields
used to define or identify the different groups may be bits or
fields that are ignored, unused, or otherwise available accord-
ing to a known paging format. For example, in the Extended
Page Table (EPT) format of the Pentium® Processor Family,
bits [63:52] may be available for use. However, embodiments
of'the present invention are not limited to using these particu-
lar bits; any bits may be used.

As an example, access to data in a first group of pages
(Group A) may be classified into three categories. Instruc-
tions (e.g., trusted code) from pages in a second group (Group
U) may always be allowed. Instructions (e.g., untrusted code)
from pages in a third group (Group V) may never be allowed.
Instructions from pages in a fourth group (Group W) may
require a case by case decision to be made after a VM exit.
However, access by instructions from Groups U and V may be
handled by memory management unit 130 without a VM exit.

30

40

45

55

6

Embodiments of the present invention may be used to
control write access (using the W bit as described below),
read access (using the R bit according to a parallel approach),
or both, without a VM exit. For example, a group of data
pages may be defined as Group A, a group of pages storing
operating system kernel code may be defined as Group U, a
group of pages storing a user driver may be defined as Group
V, an embodiment may provide for the access to be controlled
without a VM exit such that Group U has write and read
access and Group V has read but not write access.

For apage to beincluded in Group A when it is accessed for
data, bit 52 in the leaf (e.g., last) level entry of its EPT paging
structure may be set. Bit 1 (the write permission bit) may also
be cleared to indicate that the page is protected from write
access; however, it may nevertheless be writable, without a
VM exit, depending on the setting of other bits as described
herein. Bit 0 (the read permission bit) may be set, to indicate
that the page is readable. In one embodiment, if the read
permission bit is not set, then the page is not writable (absent
a VM exit) regardless of the settings of other bits as described
herein.

For a page to be included in Group U when an instruction
from the page is attempting to access data, bit 52 in all levels
of its EPT page structures may be set, such that the logical
AND ofbit 52 from all levels is “1°, and bit 58 may be cleared
in at least one level, such that the logical AND of bit 52 from
alllevelsis ‘0’. For a page to be included in Group V when an
instruction from the page attempts to access data, bit 52 may
be cleared in one level, such that the logical AND of bit 52
from all levels is ‘0°, and bit 58 may be set in all levels, such
that the logical AND of bit 58 from all levels is “1°. For a page
to be included in Group W when an instruction from the page
attempts to access data, bit 58 in at least one level and bit 52
in at least one level may be cleared, such that the logical AND
of'the bit 58 from each level is ‘0” and the logical AND of the
bit 52 from each level is also “0’.

Then, for example, when an instruction tries to write data to
a page in Group A, the page walk by MMU 130 does not
automatically result in a VM exit even though the W bit is <0”.
Instead, MMU 130 determines whether the attempted access
is automatically allowed, automatically not allowed, or
results ina VM exit based on bit 52 of the leaflevel entry to the
data page and bits 52 and 58 of each level’s entry to the
instruction page. Since bit 52 of the data page is ‘1°, the
logical AND ofbit 52 from each EPT level for the instruction
page and the logical AND of bit 58 from each EPT level for
the instruction page are used to determine whether the
instruction page is in Group U, V, or W. If the instruction page
is in Group U, the access is allowed without a VM exit. If the
instruction page is in Group V, the access is denied without a
VM exit, and the instruction may be skipped. If the instruction
page is in Group W, a VM exit is caused where the reason may
be an EPT violation.

Other groups of data pages and groups of instruction pages
corresponding to those data pages may also be defined using
other bits. For example, bit 53 may be used (as described
above for bit 52) to defined a Group B of data pages, and bits
53 and 59 may be used (as described above for bits 52 and 58,
respectively) to defined a Group X, a Group Y, and a Group Z
of instruction pages for the Group B data pages. In one
embodiment, six different groups of data pages (using one of
bits 57:52 for each group of data pages and one of bits 57:52
and one of bits 63:58 for each corresponding group of instruc-
tion pages). Instruction pages from different groups may
overlap. For example, a page may be in Group U and in Group
X, in which case it may access, without a VM exit, data from
a page in Group A and in Group B.

US 9,098,427 B2

7

In some embodiments, additional data page groups may be
defined. For example, six data page groups, referred to as F1,
E1, D1, C1, B1, and A1, may use bits [57:52], respectively,
for data pages and bits [57:52] and [63:58] for their corre-
sponding instruction pages, and an additional six data page
groups, referred to as F2, E2, D2, C2, B2, and A2, may also
use bits [57:52], respectively, for data pages and bits [57:52]
and [63:58] for their corresponding instruction pages. Since
the first six groups use the same bits as the last six groups, two
different EPT structures are used (e.g., EPT1 for F1, E1, D1,
C1, B1, and Al; and EPT2 for F2, E2, D2, C2, B2, and A2;
where FIG. 1 shows EPT1 as EPT 121 and EPT2 as EPT 122),
and an EPT view switch may be used to switch between the
two different EPT structures. Embodiments of the present
invention provide for this view switch to occur without a VM
exit, using, for example, bits [63:58] of the leaflevel entries to
the data pages to form an integer to serve as an EPT number.
For example, the EPT number for EPT1 may be ‘1’ and the
EPT number for EPT2 may be ‘2. Then, in EPT1, aleaflevel
entry to adata page in A1, B1, C1, D1, E1, or F1 will have bits
[63:58] cleared to indicate that no view switch is needed, but
a leaf level entry to a data page in A2, B2, C2, D2, E2, or F2
will have the value ‘2’ stored in bits [63:58] to cause a view
switch to EPT2. Then, in EPT2, a leaf level entry to a data
page in A2, B2, C2, D2, E2, or F2 will have bits [63:58]
cleared to indicate that no view switch is needed, but a leaf
level entry to a data page in Al, B1, C1, D1, E1, or F1 will
have the value ‘1’ stored in bits [63:58] to cause a view switch
to EPT1. Therefore, a view switch to accommodate a greater
number of groups of data pages may be performed without a
VM exit. The number of groups of data pages that may be
accommodated with and without a view switch may be deter-
mined by the number of bits used in the EPT format for
various embodiments of the invention. The number of bits
available for software to use in the entry format of the EPT
paging structure may be found with the CPU ID instruction
and/or in a storage location in processing storage 113, such as
model specific register 117. Software (e.g., a VMM) may use
all or some of the available bits to implement an embodiment
of the present invention, and may use some or all for another
purpose. Therefore, a new field (e.g., field 128) may be added
to the VMCS (e.g., VMCS 123) to indicate the number of bits
to be used to implement an embodiment of the present inven-
tion, as well as their location in the EPT paging structure entry
format. For purposes of this description, these bits may be
referred to as a page group field.

In some embodiments, the techniques described above
may also be used for an instruction fetch (using the X bit in a
parallel approach), in addition or instead of a data access.
Therefore, embodiments may provide for distinguishing
between an EPT number for an instruction fetch, a data write,
and/or a data read. For example, in an embodiment applying
the techniques to an instruction fetch and a data write, an EPT
number, such as in bits [63:58] as described above, may refer
to an EPT structure to be switched to for an instruction fetch
ora data write. Therefore, any one or more of bits [57:52] may
be used to differentiate.

Furthermore, to provide for a view switch, a pointer to the
new EPT structure may be provided. In some embodiments, a
new field may be added to the VMCS (e.g., VMCS 123) for
this purpose. The new field (e.g., field 129) may be used to
point to a data structure (e.g., EPTP table 125) in system
memory to link an EPT number, for example from bits [63:
58] as described above (e.g. EPT number 126), to a pointer
(e.g., EPTP 127) to the corresponding EPT structure.

FIGS. 2 and 3 illustrate methods 200 and 300 for control-
ling access to groups of memory pages in a virtualized envi-

20

40

45

65

8

ronment according to an embodiment of the present inven-
tion. Although method embodiments of the invention are not
limited in this respect, reference may be made to elements of
FIG. 1 to help describe the method embodiments of FIGS. 2
and 3. Method 200 may be performed by a VMM operating
outside of a VM to prepare for performing method 300 within
the VM without causing a VM exit. Method 200 includes
setting up four different groups of data pages (e.g., Al, B1,
A2, and B2), two in each of two different paging structures
(e.g., EPT1 and EPT2), and two different groups of instruc-
tion pages for each group of data pages (e.g., U1/V1/W1 for
A1,X1/Y1/71 for B1, U2/V2/W2 for A2, and X2/Y2/72 for
B2). However, any number of each group and any number of
paging structures may be used within the scope of the present
invention.

Inbox 210 of method 200, a processor is programmed with
a number of bits to use for controlling access to groups of
memory pages. In box 212, a first group of pages to which
access is to be controlled (e.g., Al) is defined by storing a first
set of values in their page group fields in a first paging struc-
ture (e.g., EPT1). In box 214, a second group of pages to
which access is to be controlled (e.g., B1) is defined by
storing a second set of values in their page group fields in a
first paging structure (e.g., EPT1). In box 216, a third group of
pages to which access is to be controlled (e.g., A2) is defined
by storing a third set of values in their page group fields in a
second paging structure (e.g., EPT2). In box 218, a fourth
group of pages to which access is to be controlled (e.g., B2) is
defined by storing a fourth set of values in their page group
fields in the second paging structure (e.g., EPT2).

In box 220, a first group of instruction pages (e.g., U1) for
accessing Al is defined by storing a fifth set of values in their
page group fields in the first paging structure (e.g. EPT1). In
box 222, a second group of instruction pages (e.g., V1) for
accessing Al is defined by storing a sixth set of values in their
page group fields in the first paging structure (e.g. EPT1). In
box 224, a third group of instruction pages (e.g., W1) for
accessing Al is defined by storing a seventh set of values in
their page group fields in the first paging structure (e.g. EPT

1).

In box 230, a fourth group of instruction pages (e.g., X1)
for accessing B1 is defined by storing an eighth set of values
in their page group fields in the first paging structure (e.g.
EPT1). Inbox 232, a fitth group of instruction pages (e.g., Y1)
for accessing B1 is defined by storing a ninth set of values in
their page group fields in the first paging structure (e.g.
EPT1). In box 234, a sixth group of instruction pages (e.g.,
7.1) for accessing B1 is defined by storing a tenth set of values
in their page group fields in the first paging structure (e.g.
EPT1).

In box 240, a seventh group of instruction pages (e.g., U2)
for accessing A2 is defined by storing a eleventh set of values
in their page group fields in the second paging structure (e.g.
EPT2). Inbox 242, an eighth group of instruction pages (e.g.,
V2) for accessing A2 is defined by storing a twelfth set of
values in their page group fields in the second paging struc-
ture (e.g. EPT2). In box 244, a ninth group of instruction
pages (e.g., W2) for accessing A2 is defined by storing a
thirteenth set of values in their page group fields in the second
paging structure (e.g. EPT2).

Inbox 250, a tenth group of instruction pages (e.g., X2) for
accessing B2 is defined by storing an fourteenth set of values
in their page group fields in the second paging structure (e.g.
EPT2). Inbox 252, a eleventh group of instruction pages (e.g.,
Y2) for accessing B2 is defined by storing a fifteenth set of
values in their page group fields in the second paging struc-
ture (e.g. EPT2). In box 254, a twelfth group of instruction

US 9,098,427 B2

9

pages (e.g., Z2) for accessing B2 is defined by storing a
sixteenth set of values in their page group fields in the second
paging structure (e.g. EPT2).

In box 260, a table is stored in memory to link EPT num-
bers to EPT pointers. In box 262, a pointer to the table is
stored in a VMCS.

In box 310 of method 300, execution of an instruction in a
VM is initiated. All of method 300 may be performed without
causing a VM exit until block 390. The instruction is from a
first memory page (the “instruction page”) and the instruction
attempts to write data to a second memory page (the “data
page”).

Inbox 312, a page walk including a walk through the active
EPT structure (e.g., EPT1) is performed to find the physical
address of the data page in system memory. In box 314, it is
determined that the execute permission bit for the data page is
‘0’ in at least one level of EPT1. In box 316, it is determined
that the write permission bit for the data page is ‘0’ in at least
one level of EPT1. In box 318, it is determined whether the
read permission bit for the data page is ‘1’ in all levels of
EPT1. If so, method 300 continues in box 320; if not, method
300 jumps to box 390 for a VM exit.

In box 320, it is determined whether the logical OR of bits
[63:58] of the leaf level entry in EPT1 for the data pageis ‘1°.
If so, it means that a view switch is to be performed, and
method 300 continues in box 322. If not, method 300 jumps to
box 330.

In box 322, a pointer to an EPTP table is found in the
VMCS. In box 324, the EPTP table is used to find the EPTP
corresponding to the EPT number stored in bits [63:58] of the
data page. Inbox 326, a view switch to the new EPT structure
(EPT2) is performed.

In box 330, it is determined whether any of bits [57:52] in
the leaf level entry in EPT2 for the data page is ‘1’ (for
example, bit 52). If so, method 300 continues in box 332. If
not, method 300 jumps to box 390 for a VM exit.

In box 332, it is determined whether the logical AND of
one of bits [57:52] of each entry in all levels of EPT2 for the
instruction page is ‘1°, where the bit position that is checked
is the bit position found to be ‘1’ in box 330. If so, then in box
334, the access is allowed, without a VM exit, and the instruc-
tion is executed by the VM. If not, then in box 336, it is
determined whether logical AND of one of bits [63:58] of
each entry in all levels of EPT2 for the instruction page is ‘1°,
where the bit position that is checked is the bit position that
corresponds to the bit position found to be ‘1’ inbox 330 (e.g.,
bit 58 for instruction corresponds to bit 52 for data). If so, then
in box 338, the access is denied, without a VM exit, the
instruction is skipped, and execution of the next instruction by
the VM is initiated. If not, then in box 390, a VM exit is
initiated.

In various embodiments of the present invention, the
method illustrated in FIGS. 2 and 3 may be performed in a
different order, with illustrated boxes combined or omitted,
with additional boxes added, or with a combination of reor-
dered, combined, omitted, or additional boxes.

Embodiments of the present invention may be embodied in
data stored on a machine-readable medium, where the data
represents a design or other information usable to fabricate all
or part of processor 100.

Thus, embodiments of an invention for controlling access
to groups of memory pages have been described. While cer-
tain embodiments have been described, and shown in the
accompanying drawings, it is to be understood that such
embodiments are merely illustrative and not restrictive of the
broad invention, and that this invention not be limited to the
specific constructions and arrangements shown and

20

25

40

45

55

60

10

described, since various other modifications may occur to
those ordinarily skilled in the art upon studying this disclo-
sure. In an area of technology such as this, where growth is
fast and further advancements are not easily foreseen, the
disclosed embodiments may be readily modifiable in arrange-
ment and detail as facilitated by enabling technological
advancements without departing from the principles of the
present disclosure or the scope of the accompanying claims.

What is claimed is:

1. A processor comprising:

a virtualization unit to transfer control of the processor to a
virtual machine;

a memory management unit to perform, in response to a
first attempt to execute on the virtual machine a first
instruction stored on a first page, a first page walk
through a first paging structure to find a second page and
to allow access to the second page without exiting the
virtual machine based at least in part on a first bit being
set in a first leaf level entry corresponding to the second
page in the first paging structure and a corresponding
second bit being set in each entry corresponding to the
first page in each level of the first paging structure.

2. The processor of claim 1, wherein the memory manage-
ment unit is also to perform, in response to a second attempt
to execute on the virtual machine a second instruction stored
on a third page, a second page walk through the first paging
structure to find the second page and to deny access to the
second page without exiting the virtual machine based at least
in part on the first bit being set in the first leaf level entry
corresponding to the second page in the first paging structure
and a corresponding third bit being set in each entry corre-
sponding to the third page in each level of the first paging
structure.

3. The processor of claim 2, wherein the memory manage-
ment unit is also to perform, in response to a third attempt to
execute on the virtual machine a third instruction stored on a
fourth page, a third page walk through the first paging struc-
ture to find a fifth page and to allow access to the fifth page
without exiting the virtual machine based at least in part on a
fourth bit being set in a second leaf level entry corresponding
to the fifth page in the first paging structure and a correspond-
ing fifth bit being set in each entry corresponding to the fourth
page in each level of the first paging structure.

4. The processor of claim 3, wherein the memory manage-
ment unit is also to perform, in response to a fourth attempt to
execute on the virtual machine a fourth instruction stored on
a sixth page, a fourth page walk through the first paging
structure to find the fifth page and to deny access to the fifth
page without exiting the virtual machine based at least in part
on the fourth bit being set in the second leaf level entry
corresponding to the fitth page in the first paging structure and
a corresponding sixth bit being set in each entry correspond-
ing to the sixth page in each level of the first paging structure.

5. The processor of claim 4, wherein the memory manage-
ment unit is also to perform, in response to a fifth attempt to
execute on the virtual machine a fifth instruction stored on a
seventh page, a fifth page walk through the first paging struc-
ture to find the eighth page and to perform a view switch to a
second paging structure without exiting the virtual machine
based at least in part on logical OR of a group of bits in a third
leaf level entry corresponding to the eighth page in the first
paging structure being “1°.

6. The processor of claim 5, wherein the first group of bits
does not include the first bit or the fourth bit.

7. The processor of claim 6, further comprising a storage
location to indicate the number of bits in the group.

US 9,098,427 B2

11

8. A method comprising:
entering a virtual machine;
performing a first page walk through a first paging structure
in response to a first attempt to execute in the virtual
machine a first instruction stored on a first page;
finding a second page through the first page walk;
determining that a first bit in a first leaf level entry corre-
sponding to the second page in the first paging structure
is set;
determining that a corresponding second bit in each entry
corresponding to the first page in each level of the first
paging structure is set; and
allowing access to the second page without exiting the
virtual machine.
9. The method of claim 8, further comprising, after enter-
ing the virtual machine:
performing a second page walk through the first paging
structure in response to a second attempt to execute in
the virtual machine a second instruction stored on a third
page;
finding the second page through the second page walk;
determining that a third bit in a first lead level entry corre-
sponding to the second page in the first paging structure
is set;
determining that a corresponding fourth bit in each entry
corresponding to the third page in each level of the first
paging structure is set; and
denying access to the second page without exiting the
virtual machine.
10. The method of claim 9, further comprising, after enter-
ing the virtual machine:
performing a third page walk through the first paging struc-
ture inresponse to a third attempt to execute in the virtual
machine a third instruction stored on a fourth page;
finding a fifth page through the third page walk;
determining that a fifth bit in a second leaf level entry
corresponding to the fifth page in the first paging struc-
ture is set;
determining that a corresponding sixth bit in each entry
corresponding to the fourth page in each level of the first
paging structure is set; and
allowing access to the fifth page without exiting the virtual
machine.
11. The method of claim 10, further comprising, after
entering the virtual machine:
performing a fourth page walk through the first paging
structure in response to a fourth attempt to execute in the
virtual machine a fourth instruction stored on a sixth
page;
finding the fifth page through the fourth page walk;
determining that a seventh bit in the second leaf level entry
corresponding to the fifth page in the first structure is set;
determining that a corresponding eighth bit in each entry
corresponding to the sixth page in each level of the first
paging structure is set; and
denying access to the fifth page without exiting the virtual
machine.
12. The method of claim 11, further comprising, after
entering the virtual machine:
performing a fifth page walk through the first paging struc-
ture in response to a fifth attempt to execute in the virtual
machine a fifth instruction stored on a seventh page;
finding an eighth page through the fifth page walk;
performing a logical OR on a group of bits in a third leaf
level entry corresponding to the eighth page;

20

25

30

40

45

12

determining that the result of the logical OR is ‘1’; and

performing a view switch to a second paging structure

without exiting the virtual machine.

13. The method of claim 12, wherein the first group of bits
does not include the first bit or the fourth bit.

14. The method of claim 13, further comprising program-
ming a control structure for the virtual machine with the
number of bits in the group.

15. The method of claim 14, further comprising finding in
a control structure for the virtual machine a pointer to a table
storing a pointer to the second paging structure.

16. The method of claim 15, further comprising finding the
pointer to the second paging structure using a value stored in
the group of bits.

17. The method of claim 8, further comprising determining
that a write permission bit in each entry corresponding to the
second page in each level of the first paging structure is
cleared.

18. The method of claim 9, further comprising, after enter-
ing the virtual machine:

performing a third page walk through the first paging struc-

ture inresponse to a third attempt to execute in the virtual

machine a third instruction stored on a fourth page;
finding the second page through the third page walk;
determining that a fifth bit in a third leaf level entry corre-
sponding to the second page in the first paging structure
is set;

determining that a corresponding sixth bit in a fourth entry

corresponding to the fourth page in at least one level of

the first paging structure is cleared;

determining that a corresponding seventh bit in a fifth entry

corresponding to the fourth page in at least one level of

the first paging structure is cleared; and

exiting the virtual machine to determine whether to allow

access to the second page.

19. A system comprising:

a memory to store a first paging structure; and

a processor including:

a virtualization unit to transfer control of the processor
to a virtual machine;

a memory management unit to perform, in response to a
first attempt to execute on the virtual machine a first
instruction stored on a first page, a first page walk
through the first paging structure to find a second page
and to allow access to the second page without exiting
the virtual machine based at least in part on a first bit
being set in a first leaflevel entry corresponding to the
second page in the first paging structure and a corre-
sponding second bit being set in each entry corre-
sponding to the first page in each level of the first
paging structure.

20. The system of claim 19, wherein:

the memory is also to store a second paging structure; and

the memory management unit is also to perform, in

response to a second attempt to execute on the virtual
machine a second instruction stored on a third page, a
second page walk through the first paging structure to
find the second page and to perform a view switch to the
second paging structure without exiting the virtual
machine based at least in part on logical OR of a group
of bits in a second leaf level entry corresponding to the
second page in the first paging structure being “1°.

#* #* #* #* #*

